We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.022610 | DOI Listing |
Plant Dis
January 2025
USDA-ARS , Ithaca, United States.
, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France.
Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).
View Article and Find Full Text PDFSci Rep
January 2025
Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.
View Article and Find Full Text PDFMicroorganisms
December 2024
National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830017, China.
Against the background of increasing salinisation of land, the use of environmentally friendly plant growth-promoting bacteria (PGPB) resources for soil improvement is particularly important. The aim of this study was to investigate the effects of DY1-3 on maize seedling growth, soil physico-chemical properties, and bacterial community structure. The study also evaluates the effects of this microbial agent on plant growth and saline soil improvement, providing theoretical references for microbial agents in promoting plant growth and improving saline soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!