Neutral grains made of the same dielectric material can attain considerable charges due to collisions and generate long-range interactions. We perform molecular dynamic simulations in three dimensions for a dilute, freely cooling granular gas of viscoelastic particles that exchange charges during collisions. As compared to the case of clustering of viscoelastic particles solely due to dissipation, we find that the electrostatic interactions due to collisional charging alter the characteristic size, morphology, and growth rate of the clusters. The average cluster size grows with time as a power law, whose exponent is relatively larger in the charged gas than the neutral case. The growth of the average cluster size is found to be independent of the ratio of characteristic Coulomb to kinetic energy, or equivalently, of the typical Bjerrum length. However, this ratio alters the crossover time of the growth. Both simulations and mean-field calculations based on Smoluchowski's equation suggest that a suppression of particle diffusion due to the electrostatic interactions helps in the aggregation process.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.022904DOI Listing

Publication Analysis

Top Keywords

granular gas
8
gas neutral
8
charges collisions
8
viscoelastic particles
8
electrostatic interactions
8
average cluster
8
cluster size
8
early-stage aggregation
4
aggregation three-dimensional
4
three-dimensional charged
4

Similar Publications

Computational Model of the Effective Thermal Conductivity of a Bundle of Round Steel Bars.

Materials (Basel)

January 2025

Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.

During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.

View Article and Find Full Text PDF

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Resistant for Biodegradation of Diesel Fuel at High Concentration and Low Temperature.

Microorganisms

December 2024

Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.

The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.

View Article and Find Full Text PDF

Mechanical Behavior of Flexible Fiber Assemblies: Review and Future Perspectives.

Materials (Basel)

December 2024

Huanjiang Laboratory, Zhuji 311800, China.

Flexible fibers, such as biomass particles and glass fibers, are critical raw materials in the energy and composites industries. Assemblies of the fibers show strong interlocking, non-Newtonian and compressible flows, intermittent avalanches, and high energy dissipation rates due to their elongation and flexibility. Conventional mechanical theories developed for regular granular materials, such as dry sands and pharmaceutical powders, are often unsuitable for modeling flexible fibers, which exhibit more complex mechanical behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!