Background: Gait modification is a treatment approach often used for a variety of neuromuscular and musculoskeletal pathologies. Gait modification is commonly applied to a single limb, as is done with foot rotation (FR) in people with knee osteoarthritis (KOA). However, the extent to which gait changes observed in the trained limb are also exhibited in the untrained, contralateral limb during a training session is unknown.
Research Question: The purpose of this study was to examine the within-limb FR differences across four unilateral FR modifications compared to natural walking.
Methods: Sixteen individuals with KOA walked on a treadmill while performing four different FR conditions: 10° toe-in, 0°, 10° toe-out and 20° toe-out. Motion capture was conducted to track FR magnitude after five minutes of practice.
Results: The change in contralateral FR angle compared to natural walking significantly increased during toe-in 10° walking (3.1°) compared to toe-out -10° and -20° walking (-1.2° and -1.5°, respectively). As expected, the ipsilateral FR angle was significantly different between all conditions.
Significance: These results suggest that small, but statistically significant changes in the untrained contralateral limb FR are observed during FR training of the ipsilateral limb. This may indicate a desire for symmetry, or a compensation when modifying the ipsilateral limb. Therefore, clinicians may need to maintain baseline FR magnitudes in the untrained limb when a patient exhibits unilateral KOA characteristics or lateral compartment KOA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2018.03.013 | DOI Listing |
Front Hum Neurosci
January 2025
Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
Background: Bimanual motor training is an effective neurological rehabilitation strategy. However, its use has rarely been investigated in patients with paralysis caused by spinal cord injury (SCI). Therefore, we conducted a case study to investigate the effects of robot-assisted task-oriented bimanual training (RBMT) on upper limb function, activities of daily living, and movement-related sensorimotor activity in a patient with SCI.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
Background: Transfemoral osseointegrated prostheses, like other uncemented prostheses experience the risk of aseptic loosening and post-operative periprosthetic fractures, with an incidence between 3% and 30%. To date, however, osseointegrated off-the-shelf prostheses are manufactured in a limited number of sizes, and some patients do not meet the strict eligibility criteria of commercial devices. A customized osseointegrated stem was developed and a pre-clinical in vitro investigation of the stem was performed, to evaluate its biomechanical performance.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
The Wuxi No.9 People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, 214000, China.
Background: Complicated wrist amputation caused by severe trauma poses a real challenge for orthopedic and hand surgeons. This study aimed to evaluate a procedure of ulnoradial-metacarpal reconstruction as a rescue option in this challenging situation.
Methods: In total, 12 patients with complicated wrist amputation induced by serious injury were selected from 2015 to 2020 and followed up for 1∼6 years at a level 1 trauma center.
Neurosci Res
January 2025
Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
The primary motor cortex (M1) is believed to be a cortical center for the execution of limb movements. Although M1 neurons mainly project to the spinal cord on the contralateral side, some M1 neurons project to the ipsilateral side via the uncrossed corticospinal pathway. Moreover, some M1 neurons are activated during ipsilateral forelimb movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!