There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866791 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2018.02.047 | DOI Listing |
Neurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFArch Toxicol
January 2025
Institute of Life Science, Swansea University Medical School, Swansea, UK.
The tumorigenic dose 50 (TD) is a widely used measure of carcinogenic potency which has historically been used to determine acceptable intake limits for carcinogenic compounds. Although broadly used, the TD model was not designed to account for important biological factors such as DNA repair and cell compensatory mechanisms, changes in absorption, etc., leading to the development of benchmark dose (BMD) approaches, which use more flexible dose-response models that are better able to account for these processes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.
Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, PHILADELPHIA, PA, USA.
Background: Alzheimer's disease (AD) is pathologically defined by the presence of extracellular Aβ plaque and intracellular tau inclusions. Emerging evidence shows that tau aggregates contain pathogenic bioactivities of templating monomeric tau into filamentous fibrils and propagating through cells. Based on these findings, assays have been developed to detect minute amounts of pathogenic tau in human samples.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating the glutamate/glutamine cycle and other oxidative stress pathways. Typically, Mn is acquired through the diet, however, Mn overexposure can arise through drinking inadequately treated well water or inhalation of Mn-containing industrial byproducts. Mn toxicity disrupts dopaminergic neurotransmission resulting in a Parkinsonian disorder referred to as manganism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!