Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels.

Mol Cell

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Molecular Engineering Laboratory, A★STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Published: March 2018

RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659731PMC
http://dx.doi.org/10.1016/j.molcel.2018.02.012DOI Listing

Publication Analysis

Top Keywords

rna binding
8
binding proteins
8
rbps interact
8
mir locus
8
mir
5
systematic discovery
4
rna
4
discovery rna
4
proteins regulate
4
regulate microrna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!