Study Design: Laboratory study.

Objective: Mesenchymal stem cells (MSCs) derived from whole bone marrow aspirate (BMA) and MSCs derived from density-gradient centrifugation were isolated from vertebral bodies and cultured under either hypoxic or normoxic conditions to evaluate their biological characteristics and HOX and TALE signature able to improve spinal surgery procedures.

Summary Of Background Data: The use of spinal fusion procedures has increased over the last decades; however, failed fusion still remains an important problem. Clinician and researchers focused their attention on the therapeutic potential of bone marrow MSCs and several methods for their isolation and cultivation have been developed. However, the best source and techniques are still debated.

Methods: MSCs morphology, surface markers, colony-forming-units, and three lineage differentiation through quantitative real-time PCR (qPCR) were evaluated. Additionally, gene expression analysis of HOX and TALE signatures during osteogenic differentiation were analyzed.

Results: Our study showed that MSCs derived from whole BMA were successfully isolated and when cultured under hypoxic condition presented greater proliferation, larger colonies, and differentiated onto osteogenic and chondrogenic lineage with greater ability, while adipogenic differentiation was less efficient. Results also revealed that MSCs, differently isolated and cultured, expressed different level of HOX and TALE signatures and that HOXB8 were up-regulated with greater efficiency in MSCs derived from whole BMA under hypoxia.

Conclusion: Our data indicated that hypoxic preconditioning of MSCs derived from whole BMA exhibited more suitable biological characteristics and different level of HOX and TALE gene activation. We, therefore, concluded that vertebral body MSCs derived from whole BMA may provide alternative sources of MSCs for tissue engineering applications for spine surgery.

Level Of Evidence: N/A.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000002626DOI Listing

Publication Analysis

Top Keywords

mscs derived
24
hox tale
16
derived bma
16
bone marrow
12
mscs
10
spinal surgery
8
cultured hypoxic
8
biological characteristics
8
tale signatures
8
isolated cultured
8

Similar Publications

Introduction: Mesenchymal stem cells possess the capability to proliferate and differentiate into diverse lineages. Their beneficial properties have been explored widely to treat various disorders. Phytochemicals like curcumin, catechin and resveratrol have been evaluated for their medicinal values and have promising potential in treating numerous diseases.

View Article and Find Full Text PDF

Intra-Articular Injection of Human Bone Marrow-Derived Mesenchymal Stem Cells in Knee Osteoarthritis: A Randomized, Double-Blind, Controlled Trial.

Cell Transplant

January 2025

Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

To assess the impact of a single intra-articular (IA) injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with knee osteoarthritis (OA), a randomized, double-blind, placebo-controlled study was conducted. The study included 24 patients with knee OA who were randomly assigned to receive either a single IA injection of BM-MSCs or normal saline. Changes in the visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS) after IA injection were assessed at 3, 6, 9, and 12 months.

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!