Plant roots release complex mixtures of bioactive molecules, including compounds that affect the activity and modify the composition of the rhizosphere microbiome. In this work, we investigated the initial phase of the interaction between tomato and an effective biocontrol strain of Trichoderma harzianum (T22). We found that root exudates (RE), obtained from plants grown in a split-root system and exposed to various biotic and abiotic stress factors (wounding, salt, pathogen attack), were able to stimulate the growth and act as chemoattractants of the biocontrol fungus. On the other hand, some of the treatments did not result in an enhanced chemotropism on Fusarium oxysporum f. sp. lycopersici, indicating a mechanism that may be selective for nonpathogenic microbes. The involvement of peroxidases and oxylipins, both known to be released by roots in response to stress, was demonstrated by using RE fractions containing these molecules or their commercial purified analogs, testing the effect of an inhibitor, and characterizing the complex pattern of these metabolites released by tomato roots both locally and systemically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-12-17-0310-R | DOI Listing |
Environ Pollut
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS, US Arid Land Agricultural Research Center, 21881 North Cardon Lane Maricopa, Maricopa, AZ 85138, USA.
As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
Wheat () is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!