AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon-halogen bonds (C-X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd-Pd, d-orbital occupation state, and the Au-Pd interface of the Pd reactive centers and studied the structure-activity relationship of Au-Pd in the catalyzed cleavage of C-X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C-Cl, C-Br, and C-I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C-Br/C-I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b05996DOI Listing

Publication Analysis

Top Keywords

occupation state
8
atoms
7
au@pd bimetallic
4
bimetallic nanocatalyst
4
nanocatalyst carbon-halogen
4
carbon-halogen bond
4
cleavage
4
bond cleavage
4
cleavage story
4
story insight
4

Similar Publications

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, 1-tetradecanol, CAS Registry Number 112-72-1.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, methyl 2-nonynoate, CAS Registry Number 111-80-8.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, dihydro-β-ionol, CAS Registry Number 3293-47-8.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, 3-hexenoic acid, CAS Registry Number 4219-24-3.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!