A high throughput synthesis method of graphene has been required for a long time to apply graphene to industrial applications. Of the various synthesis methods, the chemical exfoliation of graphite via graphene oxide (GO) is advantageous as far as productivity is concerned; however, the quality of the graphene produced by this method is far inferior to that synthesized by other methods, such as chemical vapor deposition on metals. Developing an effective reduction and restoration method for GO on dielectric substrates has been therefore a key issue. Here, we present a method for changing GO deposited on a dielectric substrate into high crystallinity graphene at 550 °C; this method uses CH/H plasma and a Cu catalyst. We found that Cu remotely catalyzed the high degree reduction and restoration of GO on SiO and the effect ranged over at least 8 mm. With this method, field-effect transistor devices can be fabricated without any post treatment such as a transfer process. This plasma treatment increased electron and hole mobilities of GO to 480 cm V s and 460 cm V s respectively; these values were more than 50 times greater than that of conventional reduced GO. Furthermore, the on-site conversion ensured that the shape of the GO sheets remained unchanged after the treatment. This plasma treatment realizes the high throughput synthesis of a desired shaped graphene on any substrate without any residue and damage being caused by the transfer process; as such, it expands the potential applicability of graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aab73eDOI Listing

Publication Analysis

Top Keywords

reduction restoration
12
plasma treatment
12
high degree
8
degree reduction
8
graphene
8
graphene oxide
8
high throughput
8
throughput synthesis
8
methods chemical
8
transfer process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!