Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here, we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity toward p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871334PMC
http://dx.doi.org/10.7554/eLife.31275DOI Listing

Publication Analysis

Top Keywords

spin1
8
human cancer
8
human
5
spin1 promotes
4
promotes tumorigenesis
4
tumorigenesis blocking
4
ul18
4
blocking ul18
4
ul18 universal
4
universal large
4

Similar Publications

The nonintegrable higher spin Kitaev honeycomb model has an exact Z_{2} gauge structure, which exclusively identifies quantum spin liquid in the half-integer spin Kitaev model. But its constraints for the integer-spin Kitaev model are much limited, and even trivially gapped insulators cannot be excluded. The physical implications of exact Z_{2} gauge structure, especially Z_{2} fluxes, in integer-spin models remain largely unexplored.

View Article and Find Full Text PDF

Quantum Speed Limit in Quantum Sensing.

Phys Rev Lett

November 2024

Department of Physics, ETH Zürich, 8093 Zürich, Switzerland.

Quantum sensors capitalize on advanced control sequences for maximizing sensitivity and precision. However, protocols are not usually optimized for temporal resolution. Here, we establish the limits for time-resolved sensing of dynamical signals using qubit probes.

View Article and Find Full Text PDF

How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of "rotation boxes", which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin- correlations provide an efficient outer SDP approximation to the quantum set.

View Article and Find Full Text PDF

Despite the importance of radiation therapy as a nonsurgical treatment for non-small cell lung cancer (NSCLC), radiation resistance has always been a concern because of poor patient response and outcomes. Therefore, it is crucial to identify novel targets to increase the effectiveness of radiotherapy and investigate the mechanisms underlying radioresistance. Previously, we demonstrated that Spindlin 1 (SPIN1) was related to tumour initiation and progression.

View Article and Find Full Text PDF

Spinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!