A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanostructured Light-Emitting Polymer Thin Films and Devices Fabricated by the Environment-Friendly Push-Coating Technique. | LitMetric

Nanostructured Light-Emitting Polymer Thin Films and Devices Fabricated by the Environment-Friendly Push-Coating Technique.

ACS Appl Mater Interfaces

Istituto per lo Studio delle Macromolecole, CNR-ISMAC , Via Corti 12 , 20133 Milano , Italy.

Published: April 2018

Push-coating is a green and extremely low-cost process in which only few microliters of conjugated polymer solutions are used to produce thin films using capillary forces. Here, we adapt this fabrication technique to replicate self-assembled nanoporous structures on green and red light-emitting conjugated polymer thin films. These films display ring-like photoluminescence and are successfully integrated into polymer light-emitting devices as emitting layers. At low applied voltages, the green-emitting devices exhibit electroluminescence (EL) from hexagonally arranged nanopixel arrays resulting from a stronger electric field in the thinner areas inside the pores. By gradually increasing the voltage up to 10 V, the emission extends to the areas around the pores. At voltages higher than 10 V, a nonreversible nanopixel to nanoring-like switching of the EL can be observed. After filling the pores with a second blue-emitting conjugated polymer, voltage-dependent reversible color tuning of the EL is achieved in the nanostructured light-emitting bilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b00137DOI Listing

Publication Analysis

Top Keywords

thin films
12
conjugated polymer
12
nanostructured light-emitting
8
polymer thin
8
polymer
5
light-emitting polymer
4
films
4
films devices
4
devices fabricated
4
fabricated environment-friendly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!