A low-count reconstruction algorithm for Compton-based prompt gamma imaging.

Phys Med Biol

Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Zhongzheng Dist., Taipei City 100, Taiwan.

Published: April 2018

The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton-nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aab737DOI Listing

Publication Analysis

Top Keywords

characteristic emission
12
low-count reconstruction
8
reconstruction algorithm
8
compton camera
8
proton beam
8
improve image
8
image quality
8
proposed method
8
mev rays
8
positions peak
8

Similar Publications

Background: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatment. This study developed machine learning models to classify positron emission tomography (PET) Aβ-positivity in participants with preclinical and prodromal AD using data accessible to primary care physicians.

View Article and Find Full Text PDF

A novel carbon emission monitoring method for power generation enterprises based on hybrid transformer model.

Sci Rep

January 2025

College of Management and Economics, Tianjin University, Nankai District, Tianjin, 300072, China.

Accurate carbon accounting is essential for power generation enterprises to participate in carbon markets and implement carbon reduction strategies. However, due to excessive reliance on detailed energy data and manual calculations, carbon emission accounting in power generation enterprises suffers from low frequency, significant lag, and poor reliability. Some evidences suggest a strong correlation between internal carbon emissions and electricity consumption in power generation enterprises.

View Article and Find Full Text PDF

Even though the effect of oil price shocks on macroeconomics has been extensively investigated, the literature on how efficiency in household energy use affect crude oil price volatility is yet explored. This study unveils whether household energy efficiency lower crude oil price volatility asymmetrically in the United States using the historical and forecast dataset that spans from 1970:Q1-2040:Q1. Applying the multivariate case of Quantile-on-Quantile Regression, the empirical results show that household energy efficiency dampens crude oil price volatility with a stronger connection in quantiles before the median quantiles of crude oil price volatility.

View Article and Find Full Text PDF

Multifunctional applications enabled by tunable multi-emission and ultra-broadband VIS-NIR luminescence energy transfer in Sn/Mn-doped lead-free Zn-based metal halides.

Mater Horiz

January 2025

School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.

View Article and Find Full Text PDF

Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho Ions.

ACS Appl Mater Interfaces

January 2025

School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!