Increased telomerase activity can be blocked by targeting the hTERT activity at both RNA and catalytic subunits. Various inhibitors had been used to regulate hTERT activity in glioblastoma cell lines and showed promising results. The present study hypothesized that the telomerase specific inhibitor BIBR1532 can effectively down-regulate the telomerase activity in LN18 glioblastoma cell line. LN18 glioblastoma cell line was treated with various concentrations of BIBR1532 at different time intervals. MTT assay was performed to determine cell viability after BIBR1532 treatment. hTERT mRNA and protein expression were determined by qRT-PCR and western blotting, respectively. Flow cytometry and TRAP assay was performed to detect the rate of apoptosis and telomerase activity in treated and control samples. One-way ANOVA was performed to compare the mean values of variables in control and BIBR1532 treated groups. LN18 cells showed a significant dose dependent cytotoxic effect after treatment with BIBR1532. hTERT mRNA expression in cells treated with 25, 100 and 200 μM BIBR1532 treated groups was decreased ~ 21, ~ 61.2, and ~ 77%, respectively (p < 0.05). We also observed that, BIBR1532 treatment reduced the expression of hTERT protein in LN18 cells in a dose dependent manner. The Flow cytometry data showed that, the drug induced significant increase in the total percentage of apoptotic cells with 200 μM concentration of BIBR1532 at all time points. BIBR1532 exhibited potent inhibition of telomerase activity in a dose-dependent manner in LN18 cells. BIBR1532 could induce apoptosis in LN18 cells through the downregulation of telomerase activity at transcriptional and translational level. We conclude that BIBR1532 may be a therapeutic agent to suppress telomerase activity, however, further efforts are necessary in order to explore this therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081925PMC
http://dx.doi.org/10.1007/s10616-018-0205-9DOI Listing

Publication Analysis

Top Keywords

telomerase activity
12
glioblastoma cell
12
ln18 cells
8
htert activity
8
ln18 glioblastoma
8
assay performed
8
htert mrna
8
bibr1532 treated
8
treated groups
8
bibr1532
7

Similar Publications

Background: Secreted frizzled-related protein 1 (SFRP1) inhibits Wnt signaling and is differentially expressed in human hair dermal papilla cells (DPCs). However, the specific effect of SFRP1 on cell function remains unclear. Telomerase reverse transcriptase (TERT) representing telomerase activity was found highly active around the hair dermal papilla.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Epitalon-activated telomerase enhance bovine oocyte maturation rate and post-thawed embryo development.

Life Sci

January 2025

Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea. Electronic address:

Telomerase is highly expressed in oocyte cumulus cells and plays a significant role in follicular development and oocyte maturation. In this study, we hypothesized that in vitro culture conditions may affect telomerase activity during in vitro embryo production (IVP) and that its activation may improve embryo quality. We first examined telomerase protein levels and localization in bovine cumulus-oocyte complexes via immunofluorescence assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!