A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. | LitMetric

Aims: Diabetes is associated with an excess release of neutrophil extracellular traps (NETs) and an enhanced NETosis, a neutrophil cell death programme instrumental to anti-microbial defences, but also involved in tissue damage. We herein investigated whether the antidiabetic drug metformin protects against NETosis.

Methods: We measured NET components in the plasma of patients with pre-diabetes who were randomized to receive metformin or placebo for 2 months. To control for the effect on glucose, we also measured NET components in the plasma of patients with type 2 diabetes before and after treatment with insulin or dapagliflozin. In vitro, we used static and dynamic imaging with advanced live confocal two-photon microscopy to evaluate the effects of metformin on cellular events during NETosis. We examined putative molecular mechanisms by monitoring chromatin decondensation and DNA release in vitro.

Results: Metformin, as compared to placebo, significantly reduced the concentrations of NET components elastase, proteinase-3, histones and double strand DNA, whereas glucose control with insulin or dapagliflozin exerted no significant effect. In vitro, metformin prevented pathologic changes in nuclear dynamics and DNA release, resulting in a blunted NETosis in response to phorbol myristate acetate and calcium influx. Metformin prevented membrane translocation of PKC-βII and activation of NADPH oxidase in neutrophils, both of which diminished the NETosis response.

Conclusions: Metformin treatment reduced the concentrations of NET components independently from glucose control. This effect was reproducible in vitro and was related to the inhibitory effect exerted by metformin on the PKC-NADPH oxidase pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00592-018-1129-8DOI Listing

Publication Analysis

Top Keywords

net components
16
metformin
9
antidiabetic drug
8
drug metformin
8
measured net
8
components plasma
8
plasma patients
8
insulin dapagliflozin
8
dna release
8
reduced concentrations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!