The drying of complex fluids involves a large number of microscopic phenomena (transport and organization of non-volatile solutes) as well as hydrodynamic and mechanical instabilities. These phenomena can be captured in drying sessile drops where different domains can be identified: strong concentration gradients, formation of a glassy or porous envelope that withstands mechanical stress, and consolidation of a layer strongly adhering to the substrate at the drop edge. In colloidal systems, we quantify the evolution of the particle volume fraction at a nanometric scale and microscopic scale and identify the conditions for the envelope formation at the free surface by balancing the effect of diffusion and evaporation. When a solid envelope is formed at a drop surface, the mechanical instabilities induced by the drying result in different drop shapes. Finally, large drying stresses build up in the solid layer adhering on the substrate, and possibly cause crack formation. In particular, we study how crack patterns are affected by the contact angle of drops and the drying conditions. A particular interest of the review is devoted to drying pattern of solutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2018-11639-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!