SEASTAR: systematic evaluation of alternative transcription start sites in RNA.

Nucleic Acids Res

Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: May 2018

Alternative first exons diversify the transcriptomes of eukaryotes by producing variants of the 5' Untranslated Regions (5'UTRs) and N-terminal coding sequences. Accurate transcriptome-wide detection of alternative first exons typically requires specialized experimental approaches that are designed to identify the 5' ends of transcripts. We developed a computational pipeline SEASTAR that identifies first exons from RNA-seq data alone then quantifies and compares alternative first exon usage across multiple biological conditions. The exons inferred by SEASTAR coincide with transcription start sites identified directly by CAGE experiments and bear epigenetic hallmarks of active promoters. To determine if differential usage of alternative first exons can yield insights into the mechanism controlling gene expression, we applied SEASTAR to an RNA-seq dataset that tracked the reprogramming of mouse fibroblasts into induced pluripotent stem cells. We observed dynamic temporal changes in the usage of alternative first exons, along with correlated changes in transcription factor expression. Using a combined sequence motif and gene set enrichment analysis we identified N-Myc as a regulator of alternative first exon usage in the pluripotent state. Our results demonstrate that SEASTAR can leverage the available RNA-seq data to gain insights into the control of gene expression and alternative transcript variation in eukaryotic transcriptomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934623PMC
http://dx.doi.org/10.1093/nar/gky053DOI Listing

Publication Analysis

Top Keywords

alternative exons
16
alternative
8
transcription start
8
start sites
8
rna-seq data
8
alternative exon
8
exon usage
8
usage alternative
8
gene expression
8
exons
6

Similar Publications

In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health.

View Article and Find Full Text PDF

Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!