The interface stability versus Li represents a major challenge in the development of next-generation all-solid-state batteries (ASSB), which take advantage of the inherently safe ceramic electrolytes. Cubic LiLaZrO garnets represent the most promising electrolytes for this technology. The high interfacial impedance versus Li is, however, still a bottleneck toward future devices. Herein, we studied the electrochemical performance of Fe-stabilized LiLaZrO (LLZO:Fe) versus Li metal and found a very high total conductivity of 1.1 mS cm at room temperature but a very high area specific resistance of ∼1 kΩ cm. After removing the Li metal electrode we observe a black surface coloration at the interface, which clearly indicates interfacial degradation. Raman- and nanosecond laser-induced breakdown spectroscopy reveals, thereafter, the formation of a 130 μm thick tetragonal LLZO interlayer and a significant Li deficiency of about 1-2 formula units toward the interface. This shows that cubic LLZO:Fe is not stable versus Li metal by forming a thick tetragonal LLZO interlayer causing high interfacial impedance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847116 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.7b12387 | DOI Listing |
Alzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: Recent studies suggest that iron and neuroinflammation are key components of Alzheimer's Disease (AD) pathology. Ferrous Fe can cause oxidative stress and cellular toxicity, but it is unknown to what extent Fe is elevated in AD, in particular with the hippocampus. To answer this question, we quantified iron oxidation state in frozen human brain hippocampi.
View Article and Find Full Text PDFDalton Trans
January 2025
Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.
Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH) affect the supercapacitor performance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
New York University Grossman School of Medicine, New York, NY, USA.
Background: Abnormal neuronal activity was observed in awake and behaving tauopathy mice using two-photon calcium imaging. Our previous study has revealed the relationship between tau pathology and altered neuronal calcium dynamics within the motor cortex of JNPL3 tauopathy mice at different stages of disease progression, specifically at 6 and 12 months of age (Wu Q et al, Neurobiol. Dis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Adv Sci (Weinh)
December 2024
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!