Liver receptor homolog-1 (LRH1) has been shown to promote tumor proliferation and development. However, the functions of LRH1 in mediating cancer cells chemoresistance are still not clear. Here, we found LRH1 levels were significantly elevated in primary breast cancer tissues in patients who developed early recurrence. Similarly, adriamycin (ADR)-resistant breast cancer cell lines also exerted high LRH1 expression. Indeed, overexpression of LRH1 attenuated cytotoxicity of chemotherapeutic drugs ADR and cisplatin (DDP) in breast cancer cells in vitro and in nude mice tumor model. Comet and BrdU assays showed overexpression of LRH1 blocked breast cancer cells DNA damage by chemotherapeutic drug, whereas depletion of LRH1 enhanced DNA damage. Remarkably, knockdown of LRH1 decreased the levels and foci of DNA damage marker γH2AX induced by ADR and DDP. Furthermore, plasmid end-joining assay indicated that knockdown of LRH1 significantly decreased non-homologous end-joining (NHEJ)-mediated double-strand break (DSB) repair efficiencies. Afterwards, we provided evidences that LRH1 promoted MDC1 transcription by directly activating MDC1 promoter and therefore increased γH2AX levels. Importantly, a LRH1-binding site mapped between -1812 and -1804 bp of the proximal MDC1 promoter was identified. Moreover, LRH1 and MDC1 mRNA levels were positively correlated in recurrent breast cancer samples. These results implied LRH1 enhanced breast cancer cell chemoresistance by upregulating MDC1 and attenuating DNA damage. Additionally, we elucidated the coactivator NCOA3 acted synergistically with LRH1 to promote MDC1 expression and chemoresistance. Altogether, LRH1-MDC1 signaling might be considered as a novel molecular target for designing novel therapeutic regimen in chemotherapy resistance breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-018-0193-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!