The involvement of orexins in reproductive function has been gradually uncovered. However, the functional role of orexins in ovarian steroidogenesis remains unclear. In the present study, we investigated the effects of orexin A on ovarian steroidogenesis by using rat primary granulosa cells that express both OX1 and OX2 receptors for orexins. Treatment with orexin A enhanced progesterone, but not estradiol, biosynthesis induced by FSH, whereas it did not affect basal levels of progesterone or estradiol. In accordance with the effects on steroidogenesis, orexin A increased the mRNA levels of progesterogenic enzymes, including StAR, P450scc and 3βHSD, but not P450arom, and cellular cAMP synthesis induced by FSH. Under the condition of blockage of endogenous BMP actions by noggin or BMP-signaling inhibitors, orexin A failed to increase levels of progesterone synthesis induced by FSH treatment, suggesting that endogenous BMP activity in granulosa cells might be involved in the enhancement of progesterone synthesis by orexin A. Treatment with orexin A impaired Smad1/5/9 activation as well as Id-1 mRNA expression stimulated by BMP-6 and BMP-7, the latter of which was reversed by treatment with an OX1 antagonist. It was also found that orexin A suppressed the mRNA expression of both type-I and -II receptors for BMPs and increased that of inhibitory Smad6 and Smad7 in granulosa cells. On the other hand, treatments with BMP-6 and -7 suppressed the expression of OX1 and OX2. Collectively, the results indicated that orexin A enhances FSH-induced progesterone production, at least in part, by downregulating BMP signaling in granulosa cells. Thus, a new role of orexin A in facilitating progesterone synthesis and functional interaction between the orexin and BMP systems in granulosa cells were revealed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2018.03.004 | DOI Listing |
Geburtshilfe Frauenheilkd
January 2025
Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany.
Introduction: Identifying non-invasive biomarkers which can predict the outcome of intracytoplasmic sperm injection (ICSI) is crucial, particularly in Germany where the challenges are intensified by the Embryo Protection Act. Recent research has highlighted biomarkers within the epidermal growth factor (EGF) family as central to follicular processes, although their predictive utility remains a subject of debate in the literature. Therefore, the primary objective of this study was to investigate the significance of amphiregulin concentrations in follicular fluid and gene expression in mural granulosa cells on oocyte maturation, fertilization, and embryo quality.
View Article and Find Full Text PDFPoult Sci
December 2024
Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
The healthy and orderly development of ovarian follicles is the basic premise to maintain normal and continuous egg production of chickens. Emerging researches continue to reveal the crucial functions of circular RNAs (circRNAs) involved in follicle development. In the present study, a novel circular RNA WRNIP1 (circWRNIP1) with higher abundance in healthy follicles than in atretic follicles was identified, suggesting its important regulatory role in follicle selection and maturation.
View Article and Find Full Text PDFF S Sci
January 2025
Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:
This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.
View Article and Find Full Text PDFPoult Sci
December 2024
Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, PR China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China. Electronic address:
Anti-Müllerian hormone (AMH) plays an important role in avian ovarian follicle development. The high mRNA expression of AMH in avian ovarian prehierarchical follicles helps prevent premature granulosa cell differentiation. Vitamin D3 was reported to downregulate AMH mRNA expression in granulosa cells of prehierarchical follicles in hens; however, the underlying molecular mechanism remains unknown.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!