Dietary intake of probiotic bacteria has been shown to impart health effects, however, maintaining viable cells in foods and during passage of the adverse conditions in the upper gastro-intestinal tract is often a problem. The objective of this research was to develop and characterize novel food-grade phase-separated gelatin-maltodextrin (G-MD) microspheres, where the gelatin was cross-linked with transglutaminase (TGase), to determine if encapsulated probiotic lactic acid bacteria were protected during exposure to simulated upper gastro-intestinal tract conditions. The stability, size, structure and protective ability of G-MD microspheres as a function of different TGase concentrations and gelatin bloom strengths were tested. The G-MD microspheres made with gelatin A 300 bloom and a TGase concentration of 10U/g prevented pepsin-induced degradation of the microspheres in simulated gastric juice (pH2.0, 2h, 37°C), resulting in significantly (p<0.05) higher numbers of survivors due to the buffering effect of intact microspheres (average diameter 46μm). After sequential incubation in simulated gastric (1h) and intestinal juices (pH7.4, 4h, 37°C), survivor levels of each of the three encapsulated Lactobacillus sp. (3C2-10, 21C2-10 and 21C2-12) were reduced by 0.2-1log(CFU/g) as compared to 3-4log(CFU/g) for the free non-encapsulated cells. This study presents a new protein based microencapsulation method, which using all food-grade ingredients protects probiotic lactic acid bacteria during exposure to adverse environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2016.04.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!