Spinocerebellar ataxia type 2 (SCA2) is a neurological disorder characterized by cerebellar dysfunction. The possible association between metals and neurodegenerative diseases is under constant investigation, with particular focus on their involvement in oxidative stress and their potential role as biomarkers of these pathologies. Whole blood samples of SCA2 patients and of healthy individuals were subjected to multi-elemental analysis by inductively coupled plasma-mass spectrometry (ICP-MS). Reduced levels of manganese and copper were found in SCA2 patients, while zinc and vanadium concentrations were significantly higher in patients compared to controls. Copper, manganese and zinc are cofactors of many enzymes (such as superoxide dismutase, SOD) involved in the cellular antioxidant response, whereas vanadium is a transition metal able to produce reactive radicals. A marked decrease of the antioxidant response has been previously reported in SCA2 patients. We suggest that an unbalance of transitional elements in the blood may reflect altered antioxidant homeostasis in SCA2 patients and could constitute a future peripheral biomarker for this disease. In addition, we suggest a possible role of vanadium in the altered lipid metabolism of SCA2 patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2018.02.011 | DOI Listing |
Eur J Neurol
January 2025
Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.
Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.
View Article and Find Full Text PDFJ Neurol
December 2024
Faculdade de Ciências Médicas da UNICAMP, Departamento de Neurologia da FCM/UNICAMP, Department of Neurology, Universidade Estadual de Campinas, University of Campinas, Cidade Universitária s/n Caixa Postal, 6111 Barão Geraldo, 13083970, Campinas, SP, Brasil.
Background: Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders characterized by progressive ataxia. Although previous studies have focused on cerebral and cerebellar damage, spinal cord involvement in SCAs remains underexplored.
Objectives: This study aims to characterize spinal cord abnormalities in SCA2, SCA3, and SCA6 and to identify its phenotypic correlates.
Cerebellum
December 2024
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
The use of F-wave study may help to gain insight into electrophysiological significance of spinocerebellar Ataxias (SCAs). Particularly, the difference of F-wave features between Chinese SCA1, SCA2 and SCA3 patients were scarcely reported. 20 SCA1, 20 SCA2, 46 SCA3 patients and 30 healthy controls underwent nerve (median, ulnar, tibial) conduction and F-wave studies, and electrophysiology parameters were compared between them.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, 518000, Guangdong, People's Republic of China.
Spinocerebellar ataxias (SCAs) types 1, 2, and 3 are the most common subtypes of SCAs. However, the atrophy patterns of these three subtypes still need to be fully clarified. In this study, a total of 130 genetically confirmed SCA patients (SCA1: n = 16; SCA2: n = 13; symptomatic SCA3: n = 76; pre-symptomatic SCA3: n = 25) along with 65 age- and sex-matched healthy controls (HCs) were enrolled.
View Article and Find Full Text PDFJ Neurol Sci
December 2024
Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece. Electronic address:
Objective: Late-onset cerebellar ataxia (LOCA) is a slowly progressive cerebellar disorder with symptom onset ≥30years of age. Intronic tandem repeat expansions (TREs) in RFC1 and FGF14 have recently emerged as common causes of LOCA. The relative contribution of classic vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!