Background: Cervical bilateral facet dislocations are among the most devastating spine injuries in terms of likelihood of severe neurological sequelae. More than half of patients with tetraparesis had sustained some form of bilateral facet fracture dislocation. They can occur at any level of the sub-axial cervical spine, but predominate between C5 and C7. The mechanism of these injuries has long been thought to be forceful flexion of the chin towards the chest. This "hyperflexion" hypothesis comports well with intuition and it has become dogma in the clinical literature. However, biomechanical studies of the human cervical spine have had little success in producing this clinically common and devastating injury in a flexion mode of loading.
Methods: The purpose of this manuscript is to review the clinical and engineering literature on the biomechanics of bilateral facet dislocations and to describe the mechanical reasons for the causal role of compression, and the limited role of head flexion, in producing bilateral facet dislocations.
Findings: Bilateral facet dislocations have only been produced in experiments where compression is the primary loading mode. To date, no biomechanical study has produced bilateral facet dislocations in a whole spine by bending. Yet the notion that it is primarily a hyper-flexion injury persists in the clinical literature.
Interpretation: Compression and compressive buckling are the primary causes of bilateral facet dislocations. It is important to stop using the hyper-flexion nomenclature to describe this class of cervical spines injuries because it may have a detrimental effect on designs for injury prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2018.02.015 | DOI Listing |
Eur Spine J
January 2025
Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
Purpose: This study aimed to compare the incidence of radiological adjacent segment disease (R-ASD) at L3/4 between patients with L4/5 degenerative spondylolisthesis (DS) who underwent L4/5 posterior lumbar interbody fusion (PLIF) and those who underwent microscopic bilateral decompression via a unilateral approach (MBDU) at L4/5. Our ultimate goal was to distinguish the course of natural lumbar degeneration from fusion-related degeneration while eliminating L4/5 decompression as a confounder.
Methods: Ninety patients with L4/5 DS who underwent L4/5 PLIF (n = 53) or MBDU (n = 37) and were followed for at least 5 years were retrospectively analyzed.
Animals (Basel)
January 2025
Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
Two convex polyhedra that markedly resemble the head of the flatback sea turtle hatchling are identified. The first example is a zygomorphic tetragonal dodecahedron, while the other, an even better matching structure, is a related tetradecahedron, herein speculated to arise from this particular dodecahedron via known mechanisms gleaned from studies of the behavior of foams. A segmented, biomorphic, convex polyhedral model to address cephalic topology is thus presented stemming from solid geometry, anatomical observations, and a recently computed densest local packing arrangement of fifteen slightly oblate spheroids in which fourteen oblate spheroids surround a central such spheroid.
View Article and Find Full Text PDFNeurospine
December 2024
Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
This video presents a case of L4-5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL, United States.
Asian Spine J
December 2024
Department of Orthopaedic Surgery, Saegil Hospital, Seoul, Korea.
Biportal endoscopic spine surgery (BESS) is an emerging technique for lumbar spinal stenosis. Previous BESS techniques involve partial osteotomy for access to spinal canal such as partial laminotomy, partial facetectomy, and other forms to access the spinal canal for decompression. However, approaches that include osteotomy can cause bone bleeding intraoperatively, leading to obscured vision, and may be at risk of postoperative facet arthritis and segmental instability due to damage to the posterior stability structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!