Background: Transforming growth factor-β (TGF-β)/Smad signaling is well known to play a critical role in the pathogenesis of systemic sclerosis (SSc). We previously developed an artificial molecule, the histidine-pyridine-histidine ligand derivative HPH-15, which may have an antifibrotic effect. The purpose of the present study was to clarify the effects of this drug in human skin fibroblasts and in a preclinical model of SSc.

Methods: The effects of HPH-15 on expression of extracellular matrix components and TGF-β signaling in human dermal fibroblasts were analyzed. The antifibrotic properties of HPH-15 and its mechanisms were also examined in a bleomycin-induced skin fibrosis mouse model.

Results: HPH-15 suppressed the TGF-β-induced phosphorylation of Smad3 and inhibited the expression of collagen I, fibronectin 1, connective tissue growth factor, and α-smooth muscle actin induced by TGF-β in cultured human skin fibroblasts. In the bleomycin-induced skin fibrosis model, oral administration of HPH-15 protected against the development of skin fibrosis and ameliorated established skin fibrosis. Additionally, HPH-15 suppressed the phosphorylation of Smad3 in various cells, including macrophages in the bleomycin-injected skin. Further, in the treated mice, dermal infiltration of proinflammatory macrophages (CD11bLy6C) and M2 profibrotic macrophages (CD11bCD204 or CD11bCD206) was significantly decreased during the early and late stages, respectively. HPH-15 treatment resulted in decreased messenger RNA (mRNA) expression of the M2 macrophage markers arginase 1 and Ym-1 in the skin, whereas it inversely augmented expression of Friend leukemia integration 1 and Krüppel-like factor 5 mRNAs, the transcription factors that repress collagen synthesis. No apparent adverse effects of HPH-15 were found during the treatment.

Conclusions: HPH-15 may inhibit skin fibrosis by inhibiting the phosphorylation of Smad3 in dermal fibroblasts and possibly in macrophages. Our results demonstrate several positive qualities of HPH-15, including oral bioavailability, a good safety profile, and therapeutic effectiveness. Thus, this TGF-β/Smad inhibitor is a potential candidate therapeutic for SSc clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855969PMC
http://dx.doi.org/10.1186/s13075-018-1534-yDOI Listing

Publication Analysis

Top Keywords

skin fibrosis
24
phosphorylation smad3
12
hph-15
11
skin
10
tgf-β/smad signaling
8
human skin
8
skin fibroblasts
8
effects hph-15
8
dermal fibroblasts
8
bleomycin-induced skin
8

Similar Publications

The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored.

View Article and Find Full Text PDF

Slit1 Promotes Hypertrophic Scar Formation Through the TGF-β Signaling Pathway.

Medicina (Kaunas)

December 2024

Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea.

Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cells (MSCs) have been introduced as a promising treatment for diabetic wounds. The effects of stem cell therapy are thought to be caused by bioactive molecules secreted by stem cells. Stem cell-based gene therapies can target bioactive molecules.

View Article and Find Full Text PDF

Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!