Adult brain volume in multiple sclerosis: The impact of paediatric onset.

Mult Scler Relat Disord

Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, Department of Medical Sciences and Public Health, University of Cagliari, Italy.

Published: April 2018

Background: Paediatric onset multiple sclerosis (POMS) is associated with reduced brain and deep grey matter volume in comparison with that in healthy controls and individuals with adult onset multiple sclerosis (AOMS). The aim of our study was to evaluate the impact of POMS on adult brain volume with adjustment for other parameters, such as disease duration.

Patients And Methods: We recruited 20 POMS and 40 AOMS patients and 20 healthy controls matched for age and sex. All study participants were adults at the time of inclusion in the study. All study subjects underwent brain magnetic resonance imaging (MRI) to evaluate whole brain, white matter, grey matter, cortical, and deep grey matter volumes. Clinical features, such as the Expanded Disability Status Scale (EDSS) score and disease duration, were also assessed.

Results: Brain (p = 0.01), grey matter (p = 0.01), and deep grey matter volume (p = 0.03) was significantly lower in POMS patients than in AOMS patients, while no differences were detected in the volume of white matter or cortical grey matter. A multiple linear regression analysis showed a relationship between brain volume (dependent variable) and the independent variables age (p < 0.000) and paediatric onset (p < 0.001), while other independent variables, including disease duration, sex, and disability, were not significantly different among groups. There were significant differences in thalamic volume among POMS and AOMS patients and healthy controls.

Conclusion: Our data support the previous findings that POMS patients have reduced brain and deep grey matter volume, particularly thalamic volume, compared with sex- and age-matched AOMS patients and healthy controls. These findings appear to be independent of disease duration and other clinical features.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msard.2018.03.004DOI Listing

Publication Analysis

Top Keywords

grey matter
24
brain volume
12
multiple sclerosis
12
deep grey
12
adult brain
8
paediatric onset
8
onset multiple
8
matter
8
matter volume
8
healthy controls
8

Similar Publications

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment.

Neuroimage

January 2025

Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.

The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.

View Article and Find Full Text PDF

A High Fat, High Sugar Diet Exacerbates Persistent Post-Surgical Pain and Modifies the Brain-Microbiota-Gut Axis in Adolescent Rats.

Neuroimage

January 2025

Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program. Electronic address:

Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions.

View Article and Find Full Text PDF

The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography.

View Article and Find Full Text PDF

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!