We revisited the Congo red analogue 2,5-bis(4'-hydroxy-3'-carboxy-styryl)benzene (X-34) to develop this highly fluorescent amyloid dye for imaging Alzheimer's disease (AD) pathology comprising Aβ and Tau fibrils. A selection of ligands with distinct optical properties were synthesized by replacing the central benzene unit of X-34, with other heterocyclic moieties. Full photophysical characterization was performed, including recording absorbance and fluorescence spectra, Stokes shift, quantum yield and fluorescence lifetimes. All ligands displayed high affinity towards recombinant amyloid fibrils of Aβ1-42 (13-300 nm K ) and Tau (16-200 nm K ) as well as selectivity towards the corresponding disease-associated protein aggregates in AD tissue. We observed that these ligands efficiently displaced X-34, but not Pittsburgh compound B (PiB) from recombinant Aβ1-42 amyloid fibrils, arguing for retained targeting of the Congo red type binding site. We foresee that the X-34 scaffold offers the possibility to develop novel high-affinity ligands for Aβ pathology found in human AD brain in a different mode compared with PiB, potentially recognizing different polymorphs of Aβ fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201800501DOI Listing

Publication Analysis

Top Keywords

tau fibrils
8
congo red
8
amyloid fibrils
8
fibrils
5
x-34
5
detection imaging
4
imaging aβ1-42
4
aβ1-42 tau
4
fibrils redesigned
4
redesigned fluorescent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!