A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of tuberculosis by automatic cough sound analysis. | LitMetric

Detection of tuberculosis by automatic cough sound analysis.

Physiol Meas

Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, South Africa.

Published: April 2018

Objective: Globally, tuberculosis (TB) remains one of the most deadly diseases. Although several effective diagnosis methods exist, in lower income countries clinics may not be in a position to afford expensive equipment and employ the trained experts needed to interpret results. In these situations, symptoms including cough are commonly used to identify patients for testing. However, self-reported cough has suboptimal sensitivity and specificity, which may be improved by digital detection.

Approach: This study investigates a simple and easily applied method for TB screening based on the automatic analysis of coughing sounds. A database of cough audio recordings was collected and used to develop statistical classifiers.

Main Results: These classifiers use short-term spectral information to automatically distinguish between the coughs of TB positive patients and healthy controls with an accuracy of 78% and an AUC of 0.95. When a set of five clinical measurements is available in addition to the audio, this accuracy improves to 82%. By choosing an appropriate decision threshold, the system can achieve a sensitivity of 95% at a specificity of approximately 72%. The experiments suggest that the classifiers are using some spectral information that is not perceivable by the human auditory system, and that certain frequencies are more useful for classification than others.

Significance: We conclude that automatic classification of coughing sounds may represent a viable low-cost and low-complexity screening method for TB.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/aab6d0DOI Listing

Publication Analysis

Top Keywords

coughing sounds
8
detection tuberculosis
4
tuberculosis automatic
4
cough
4
automatic cough
4
cough sound
4
sound analysis
4
analysis objective
4
objective globally
4
globally tuberculosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!