Aerobic (AE) and resistance exercise (RE) elicit unique adaptations in skeletal muscle that have distinct implications for health and performance. The purpose of this study was to identify the unique transcriptome response of skeletal muscle to acute AE and RE. In a counterbalanced, crossover design, six healthy, recreationally active young men (27 ± 3 yr) completed acute AE (40 min of cycling, ∼70% maximal HR) and RE [8 sets, 10 reps, ∼65% 1-repetition maximum (1RM)], separated by ∼1 wk. Muscle biopsies (vastus lateralis) were obtained before and at 1 and 4 h postexercise. Whole transcriptome RNA sequencing (HiSeq2500; Illumina) was performed on cDNA synthesized from skeletal muscle RNA. Sequencing data were analyzed using HTSeq, and differential gene expression was identified using DESeq2 [adjusted P value (FDR) <0.05, >1.5-fold change from preexercise]. RE resulted in a greater number of differentially expressed genes at 1 (67 vs. 48) and 4 h (523 vs. 221) compared with AE. We identified 348 genes that were differentially expressed only following RE, whereas 48 genes were differentially expressed only following AE. Gene clustering indicated that AE targeted functions related to zinc interaction, angiogenesis, and ubiquitination, whereas RE targeted functions related to transcription regulation, cytokine activity, cell adhesion, kinase activity, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. ESRRG and TNFSRF12A were identified as potential targets related to the specific response of skeletal muscle to AE and RE, respectively. These data describe the early postexercise transcriptome response of skeletal muscle to acute AE and RE and further highlight that different forms of exercise stimulate unique molecular activity in skeletal muscle. NEW & NOTEWORTHY Whole transcriptome RNA sequencing was used to determine the early postexercise transcriptome response of skeletal muscle to acute aerobic (AE) and resistance exercise (RE) in untrained individuals. Although a number of shared genes were stimulated following both AE and RE, several genes were uniquely responsive to each exercise mode. These findings support the need for future research focused to better identify the role of exercise mode as it relates to targeting specific cellular skeletal muscle abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00014.2018DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
36
transcriptome response
16
response skeletal
16
muscle acute
12
postexercise transcriptome
12
rna sequencing
12
differentially expressed
12
muscle
10
skeletal
9
aerobic resistance
8

Similar Publications

Introduction And Importance: Neglected posterior hip dislocations in adults are rare, particularly when untreated for years. In developing nations, patients often rely on traditional bone setters, leading to delayed diagnosis and increased complications. Adult hip dislocations carry a higher risk of avascular necrosis and require complex treatments.

View Article and Find Full Text PDF

Agreement analysis and associated factors of SARC-F and SARC-CALF in screening of risk sarcopenia in people living with human immunodeficiency virus.

Clinics (Sao Paulo)

January 2025

Posgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil. Electronic address:

Introduction: People Living with Human Immunodeficiency Virus (PLHIV) appear to be at a higher risk of developing sarcopenia. Various factors seem to influence the risk of sarcopenia, and its prevalence may differ depending on the screening tool used. This study aimed to (i) Screen the risk of sarcopenia in PLHIV using the SARC-F and SARCCalf and identify associated factors; (ii) Analyze the agreement between the instruments in PLHIV.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Objective: The objective of this study was to analyse the association between body composition and changes in health-related quality of life (HRQoL) of patients followed for hip and knee osteoarthritis (OA).

Methods: Longitudinal data from the Knee and Hip OsteoArthritis Long-term Assessments (KHOALA) cohort, a multicentre cohort of 878 patients with symptomatic knee and/or hip OA, were used. The main outcome criteria were changes in patient-reported outcomes measures, the Study Short Form-36 (physical functioning, pain, mental health and vitality) and the OsteoArthritis Knee and Hip Quality Of Life (OAKHQOL)(physical activity, pain and mental health).

View Article and Find Full Text PDF

The Utility of Preoperative Phenylephrine Testing in Müller Muscle Conjunctival Resection Surgery for Involutional Ptosis.

Ophthalmic Plast Reconstr Surg

January 2025

Division of Orbital and Ophthalmic Plastic Surgery, Jules Stein Eye Institute, University of California, Los Angeles, California, U.S.A.

Purpose: Phenylephrine testing prior to Müller muscle conjunctival resection has traditionally been used to predict postoperative outcomes. The purpose of this study is to determine if preoperative phenylephrine testing impacts postoperative changes in eyelid position.

Methods: In this multicenter cross-sectional cohort study, 270 eyelids of participants with involutional ptosis and levator function >12 mm who underwent Müller muscle conjunctival resection were divided into 2 comparison groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!