Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and macroscopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a circular capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting, we show that the presence of a moving contact line induces a wetting transition at a critical capillary number that is contact angle dependent. At small displacement rates, the fluid-fluid interface deforms slightly from its equilibrium state and moves downstream at a constant velocity, without changing its shape. As the displacement rate increases, however, a wetting transition occurs: the interface becomes unstable and forms a finger that advances along the axis of the tube, leaving the contact line behind, separated from the meniscus by a macroscopic film of the viscous fluid on the tube wall. We describe the dewetting of the entrained film, and show that it universally leads to bubble pinch-off, therefore demonstrating that the hydrodynamics of contact line motion generate bubbles in microfluidic devices, even in the absence of geometric constraints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.084501 | DOI Listing |
J Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA.
The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface.
View Article and Find Full Text PDFFood Res Int
February 2025
Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
The research aimed to assess the effect of polysaccharides (maltodextrin and β-cyclodextrin) on technological properties of low-lactose milk powder obtained by spray drying of β-galactosidase hydrolysed milk. Low-lactose milk powders i.e.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia.
The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.
To achieve superhydrophobicity with an apparent contact angle (θ*) greater than 150° on rough surfaces, materials with a high Young's contact angle (θ > 90°) are commonly utilized. However, achieving superhydrophobicity with θ < 90° materials without specific auxiliary designs faces unknown challenges. Here, we develop a novel superhydrophobic nanocoating with θ* of ∼155° sprayed by an ethanol suspension only composed of bisphenol A epoxy resin (EPA) with a low θ of ∼70° and hydrophilic SiO nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!