Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.078002 | DOI Listing |
Microorganisms
December 2024
Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.
The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.
View Article and Find Full Text PDFProtist
December 2024
Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan 54150, Republic of Korea. Electronic address:
This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea.
View Article and Find Full Text PDFPlant Dis
December 2024
Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, China;
Litsea cubeba (Lour.) Per., named as May Cang, is a rare deciduous evergreen tree and cultivated for its ethnopharmacological properties and medicinal uses.
View Article and Find Full Text PDFChemosphere
February 2025
University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA. Electronic address:
Granular activated carbon (GAC) is widely used to treat contaminated per- and polyfluoroalkyl substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that need to be landfilled or regenerated. A novel modified supercritical CO (scCO) extraction for regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the procedure yielded >99% perfluorooctanoic acid (PFOA) desorption after a 60-min treatment in a continuous flow reactor.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China.
The stress status of a soil pressure cell placed in soil is very different from its stress state in a uniform fluid medium. The use of the calibration coefficient provided by the soil pressure cell manufacturer will produce a large error. In order to improve the measurement accuracy of the interface-type earth pressure cell placed in soil, this paper focuses on a single-membrane resistive earth pressure cell installed on the surface of a structure, analyzing the influence of loading and unloading cycles, the thickness and particle size of the sand filling, and the depth of the earth pressure cell inserted in the structure on the calibration curve and matching error, which were analyzed through calibration tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!