Ovarian cancer is the leading cause of cancer death among gynecological malignancies. The high mortality rate has not been significantly reduced despite advances in surgery and chemotherapy. Gene therapy shows therapeutic potential, but several key issues must be resolved before clinical application. To minimize toxicity in noncancerous tissues, tumor-specific ligands are conjugated to vectors to increase the selectivity of drug delivery. The expression pattern of follicle-stimulating hormone (FSH) receptor in normal and cancer tissues provides an opportunity for highly selective drug delivery in ovarian cancer. Furthermore, tumor-specific promoters can conditionally regulate therapeutic gene expression in tumor or normal tissues. The mucin 16 (MUC16) promoter might be a potential tool to drive ovarian cancer-localized gene expression since MUC16/CA125 is overexpressed in most ovarian carcinomas. Here, we screened the possible MUC16 promoter sequences and constructed MUC16 promoter-driven gro-α shRNA plasmid vectors. The vectors were specifically delivered into ovarian cancer cells via FSH peptide-conjugated nanoparticles. The predicted promoter sequence with TAAA repeats showed high transcriptional activity. The nanoparticle complex containing MUC16 promoter-driven gro-α shRNA and FSH peptides had the ability to decrease gro-α protein secretion in ovarian cancer cells and block tumor growth without obvious toxic effects in a nude mouse model bearing ovarian cancer. Our study provides a novel gene delivery system using a MUC16 promoter trigger and FSH peptide-mediated active targeting in ovarian cancer, and this system may be a promising strategy for specific genetic therapeutic delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058609PMC
http://dx.doi.org/10.1080/10717544.2018.1451934DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
muc16 promoter
16
ovarian
9
follicle-stimulating hormone
8
cancer
8
drug delivery
8
gene expression
8
muc16 promoter-driven
8
promoter-driven gro-α
8
gro-α shrna
8

Similar Publications

Ovarian cancer has a poor prognosis, and screening methods have not been established. Biomarkers based on molecular genetic characteristics must be identified to develop diagnostic and therapeutic strategies for all cancer types, particularly ovarian cancer. The present study aimed to evaluate the usefulness of genetic analysis of cervical and endometrial liquid-based cytology (LBC) specimens for detecting somatic mutations in patients with ovarian cancer.

View Article and Find Full Text PDF

Introduction: Adaptive ChemoTherapy for Ovarian cancer (ACTOv) is a phase II, multicentre, randomised controlled trial, evaluating an adaptive therapy (AT) regimen with carboplatin in women with relapsed, platinum-sensitive high-grade serous or high-grade endometrioid cancer of the ovary, fallopian tube and peritoneum whose disease has progressed at least 6 months after day 1 of the last cycle of platinum-based chemotherapy. AT is a novel, evolutionarily informed approach to cancer treatment, which aims to exploit intratumoral competition between drug-sensitive and drug-resistant tumour subpopulations by modulating drug dose according to a patient's own response to the last round of treatment. ACTOv is the first clinical trial of AT in this disease setting.

View Article and Find Full Text PDF

Advances in gynaecologic oncology research lead to continuous updates in clinical guidelines. However, undergraduate medical education often lacks in-depth coverage of recent developments, limiting students' preparedness for evidence-based management of gynaecological cancers. This study aimed to bridge the educational gap by integrating case-based analyses of practice-changing studies into the undergraduate obstetrics and gynaecology course.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!