Ascidian embryos have been employed as model systems for studies of developmental biology for well over a century, owing to their desirable blend of experimental advantages, which include their rapid development, traceable cell lineage, and evolutionarily conserved morphogenetic movements. Two decades ago, the development of a streamlined electroporation method drastically reduced the time and cost of transgenic experiments, and, along with the elucidation of the complete genomic sequences of several ascidian species, propelled these simple chordates to the forefront of the model organisms available for studies of regulation of gene expression. Numerous ascidian sequences with tissue-specific enhancer activity were isolated and rapidly characterized through systematic in vivo experiments that would require several weeks in most other model systems. These cis-regulatory sequences include a large collection of notochord enhancers, which have been used to visualize notochord development in vivo, to generate mutant phenotypes, and to knock down genes of interest. Moreover, their detailed characterization has allowed the reconstruction of different branches of the notochord gene regulatory network. This chapter describes how the use of transgenic techniques has rendered the ascidian Ciona a competitive model organism for studies of notochord development, evolution, and gene regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-10-7545-2_8DOI Listing

Publication Analysis

Top Keywords

evolutionarily conserved
8
gene expression
8
model systems
8
notochord development
8
notochord
5
investigating evolutionarily
4
conserved molecular
4
molecular mechanisms
4
mechanisms controlling
4
gene
4

Similar Publications

Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

RTP4 restricts influenza A virus infection by targeting the viral NS1 protein.

Virology

January 2025

NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China; National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China. Electronic address:

The influenza A virus evades the host innate immune response to establish infection by inhibiting RIG-I activation through its nonstructural protein 1 (NS1). Here, we reported that receptor-transporting protein 4 (RTP4), an interferon-stimulated gene (ISG), targets NS1 to inhibit influenza A virus infection. Depletion of RTP4 significantly increased influenza A virus multiplication, while NS1-deficient viruses were unaffected.

View Article and Find Full Text PDF

Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities.

Int J Mol Sci

January 2025

Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea.

The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!