Intra-electron transfer induced by protonation in copper-containing nitrite reductase.

Metallomics

Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan.

Published: April 2018

The inter- and intra-electron and proton transfers in the nitrite reduction of copper-containing nitrite reductase (CuNiR) were investigated by using the QM/MM method with the calculational models containing type 1 (T1) and type 2 (T2) Cu sites. The electron transfer from the outer electron donor protein to the T1 Cu site occurred both before and after nitrite binding, and nitrite binding lowered the reduction potential of the Cu T1 site. The protonation of catalytic His244 subsequent to nitrite binding and T1 Cu reduction induced partial intra-electron transfer from T1 to T2 Cu sites. The proton transfer from His244 to nitrite bound on the T2 Cu site via the hydrogen bond network induced intra-electron transfer from the T1 to T2 Cu site. The interaction of the T1 Cu ligand with the second sphere amino acid residues and water molecules affected the reduction potential of the T1 Cu site. The water molecules in the so-called proton pool have an important role in the regulation of the basicity of His244. The conformation of the sensor loop did not change along the reaction, but the water molecule network extending along the sensor loop was changed by nitrite binding.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7mt00323dDOI Listing

Publication Analysis

Top Keywords

nitrite binding
16
intra-electron transfer
12
nitrite
8
copper-containing nitrite
8
nitrite reductase
8
reduction potential
8
potential site
8
water molecules
8
sensor loop
8
site
5

Similar Publications

Sodium nitrite orchestrates macrophage mimicry of tongue squamous carcinoma cells to drive lymphatic metastasis.

Br J Cancer

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China.

Background: Tongue squamous cell carcinoma (TSCC) is a malignant oral cancer with unclear pathogenesis that shows a tendency for early-stage lymphatic metastasis. This results in a poor prognosis, with a low 5-year survival rate. Dietary sodium nitrite (NaNO) has proposed associations with disease, including cancer.

View Article and Find Full Text PDF

Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.

View Article and Find Full Text PDF

Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.

View Article and Find Full Text PDF

Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011.

Biochim Biophys Acta Proteins Proteom

December 2024

Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.

Article Synopsis
  • The study details the characterization of a mutated variant of copper-containing nitrite reductase (SmNirK) from S. meliloti, where the catalytic aspartate (Asp) is replaced with serine (Ser) via site-directed mutagenesis.
  • The D134S variant retains the homotrimer structure and similar T1 electron transfer center to the wild-type, but shows altered electronic properties in the T2 active site, impacting its enzymatic efficiency and pH dependence.
  • EPR studies reveal significant changes in the T2 properties due to the mutation, highlighting the role of T2 ligands in catalysis and suggesting a potential mechanism for electron transfer influenced by the Asp/Ser switch.
View Article and Find Full Text PDF

Androglobin (Adgb) was discovered as the fifth mammalian globin, but its structure and function remain elusive. In this study, the heme-binding globin domain of Adgb was expressed and its interaction with calmodulin (CaM) was investigated. The protein structure of Adgb and its complex with CaM were predicted using AlphaFold3 and HDOCK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!