This article comprised the data related to the research article entitled "Feasibility and usefulness of three-dimensional optical coherence tomography guidance for optimal side branch treatment in coronary bifurcation stenting" (Nagoshi et al., In press) [1]. In this article we reports details about two patterns of guide wire (GW) recrossing position after crossover stenting in bifurcation lesion classified with three-dimensional optical coherence tomography (3D-OCT) (Okamura et al., 2014) [2] and follow-up data about the treatment with percutaneous coronary intervention(PCI) for bifurcation lesion in terms of the two- (2D) or 3D-OCT guidance. Subgroup analysis about differences in the parameters between the proximal and the distal GW recrossing patterns are analyzed here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5847640PMC
http://dx.doi.org/10.1016/j.dib.2017.12.024DOI Listing

Publication Analysis

Top Keywords

three-dimensional optical
12
optical coherence
12
coherence tomography
12
bifurcation lesion
12
tomography guidance
8
data two-
4
two- three-dimensional
4
guidance treatment
4
bifurcation
4
treatment bifurcation
4

Similar Publications

Visualization of porcine and human aqueous humor outflow tract anatomies with transparency enhancement.

Jpn J Ophthalmol

January 2025

Institute for Photon Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Purpose: There is no established method for visualizing the three-dimensional (3D) structure of the aqueous humor outflow tract. This study attempted to visualize the 3D structures of porcine and human ocular tissues, particularly the aqueous humor outflow tract using a transparency reagent composed of 2, 2-thiodiethanol.

Study Design: Clinical and experimental.

View Article and Find Full Text PDF

Three-dimensional subcellular imaging is essential for biomedical research, but the diffraction limit of optical microscopy compromises axial resolution, hindering accurate three-dimensional structural analysis. This challenge is particularly pronounced in label-free imaging of thick, heterogeneous tissues, where assumptions about data distribution (e.g.

View Article and Find Full Text PDF

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding.

Microsyst Nanoeng

January 2025

Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.

View Article and Find Full Text PDF

Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties.

View Article and Find Full Text PDF

Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!