A c-di-GMP-Modulating Protein Regulates Swimming Motility of in Response to Arginine and Glutamate.

Front Cell Infect Microbiol

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada.

Published: March 2019

is an opportunistic bacterium that can thrive in different environments, including the amino acid-rich mucus of the cystic fibrosis (CF) lung. responds to the nutritional conditions that mimic the CF sputum by increasing flagellin expression and swimming motility. Individual amino acids also induce swimming but not flagellin expression. Here, we show that modulation of the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) levels by the PAS-containing c-di-GMP phosphodiesterase, BCAL1069 (CdpA), regulates the swimming motility of K56-2 in response to CF sputum nutritional conditions. Heterologous expression of WspR, a diguanylate cyclase, in K56-2 caused an increase in c-di-GMP levels and reduced swimming motility but did not affect flagellin expression or flagellar biosynthesis. After insertional mutagenesis of 12 putative genes encoding c-di-GMP metabolizing enzymes, one mutant of the locus BCAL1069 (), exhibited decreased swimming motility independent of flagellin expression in CF sputum nutritional conditions and an increase in intracellular c-di-GMP levels. The reduced swimming motility phenotype of the BCAL1069 mutant was observed in the presence of arginine and glutamate, but not of histidine, phenylalanine, or proline. The CdpA was also found to be involved in regulation of protease activity but not in biofilm formation. Altogether, these results highlight a role of BCAL1069 (CdpA) in sensing the nutritional conditions of the CF sputum and eliciting a pathogenic response that includes swimming motility toward amino acids and an increase in protease activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835511PMC
http://dx.doi.org/10.3389/fcimb.2018.00056DOI Listing

Publication Analysis

Top Keywords

swimming motility
28
nutritional conditions
16
flagellin expression
16
c-di-gmp levels
12
swimming
8
regulates swimming
8
arginine glutamate
8
amino acids
8
bcal1069 cdpa
8
sputum nutritional
8

Similar Publications

Quorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea.

View Article and Find Full Text PDF

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

[Visualization of flagella and its applications in research on flagellar functions].

Sheng Wu Gong Cheng Xue Bao

January 2025

Medical Genetics Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.

Flagella are important protein structures on the cell surface of bacteria and the main appendage for bacterial swimming. Flagella play a crucial role in bacterial motility, chemotaxis, pathogenicity, and environmental sensing. With the development of microscopic tracking technology and flagellum visualization tools, new forms of flagellar motility and increasing roles of flagella in the physiological activities of bacteria have been discovered.

View Article and Find Full Text PDF

The GlnE protein of Azorhizobium caulinodans ORS571 plays a crucial role in the nodulation process of the legume host Sesbania rostrata.

Microbiol Res

January 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China. Electronic address:

The GlnE enzyme, functioning as an adenylyltransferase/adenylyl-removing enzyme, plays a crucial role in reversible adenylylation of glutamine synthetase (GS), which in turn regulates bacterial nitrogen assimilation. Genomic analysis of Azorhizobium caulinodans ORS571 revealed an open reading frame encoding a GlnE protein, whose function in the free-living and symbiotic states remains to be elucidated. A glnE deletion mutant retained high GS activity even under nitrogen-rich conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!