Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron accumulation in activated microglia has been consistently reported in neurodegenerative diseases. Previous results suggest that these cells facilitate neuroinflammation leading to neuronal cell death. Therefore, chemical compounds that alleviate the activation of iron-rich microglia may result in neuroprotection. In the present study, the effect of valproic acid (VPA) on microglial activation under iron-rich conditions was investigated. BV-2 microglial cells were exposed to lipopolysaccharide (LPS; 1 µg/ml) and iron (300 µg/ml) with or without VPA (1.6 mM). The results demonstrated that VPA attenuated the activation of iron-rich BV2 cells induced by LPS by down-regulating the mRNA expression of inducible nitric oxide (NO) synthase and interleukin 1β (IL-1β; P<0.01), to ultimately reduce the production of NO and IL-1β (P<0.01). These events were accompanied by an attenuation in the nuclear translocation of nuclear factor-κB p65 subunit (P<0.01). These findings suggest that VPA may be therapeutically useful for attenuating the activation of iron-rich microglia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838300 | PMC |
http://dx.doi.org/10.3892/br.2018.1062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!