Background: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs.

Method: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves. The location, modality, and intensity of each sensation were also analyzed. In an effort to evoke natural sensations, several patterned waveforms were evaluated.

Results: Distal sensation was obtained in all but one of the 48 nerves tested in able-bodied subjects and in the two nerves from subjects with an amputation. Increasing the pulse amplitude of the stimulus caused an increase in the area and magnitude of the sensation in a majority of subjects. A low frequency waveform evoked a tapping or tapping-like sensation in 29 out of the 31 able-bodied subjects and a sensation that could be considered natural in two subjects with an amputation. This waveform performed better than other patterned waveforms that had proven effective during implanted extra-neural stimulation.

Conclusion: Surface electrical stimulation has the potential to be a powerful, non-invasive tool for activation of the nervous system. These results suggest that a tapping sensation in the distal extremity can be evoked in most able-bodied individuals and that targeting the nerve trunk from the surface is a valid method to evoke sensation in the phantom limb of individuals with an amputation for short term applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842387PMC
http://dx.doi.org/10.2174/1874120701812010001DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
16
surface electrical
12
sensation
9
natural sensations
8
sensation distal
8
patterned waveforms
8
able-bodied subjects
8
subjects amputation
8
nerves
5
subjects
5

Similar Publications

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

Unlabelled: Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning.

View Article and Find Full Text PDF

Objective: To evaluate the clinical efficacy of bladder function training combined with pelvic floor biofeedback electrical stimulation in the treatment of neurogenic bladder and its impact on urodynamics.

Methods: This was a clinical comparative study. A total of 120 patients with neurogenic bladder after spinal cord injury admitted to Beijing Rehabilitation Hospital of Capital Medical University and Beijing Shijingshan Hospital from January 2023 to December 2023 were randomly divided into two groups (n= 60/group).

View Article and Find Full Text PDF

Objective:  Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy and it is currently intractable We compared the efficacy of transcutaneous electrical acupoint stimulation (TEAS) against non-TEAS groups and investigated the variables that predict effective relief of upper extremity pain in cancer survivors with CIPN.

Methods: We retrospectively collected data of cancer survivors who developed CIPN between May 2017 to March 2022. All eligible CIPN patients were divided into TEAS group (received TEAS) and non-TEAS group (did not receive TEAS) in our department.

View Article and Find Full Text PDF

Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs.

Methods: We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!