In the present study, the aim was to investigate the role of microRNA-1180 (miR-1180) in the growth and apoptosis of prostate cancer, as well as to identify its direct targets. Initially, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the expression of miR-1180 in the prostate cancer tissues and adjacent normal prostate tissues of 30 patients, as well as in DU145 and RWPE-1 cells. Next, DU145 cells were transfected with miR-1180 mimics, and the expression levels of associated proteins were determined by western blot assay. In addition, the role of miR-1180 in the proliferation, apoptosis, invasion and migration of DU145 cells was investigated by MTT, flow cytometry, cell invasion and wound healing assays, respectively. A dual-luciferase reporter assay was also performed to examine whether TNF receptor associated factor 1 (TRAF1) and B-cell lymphoma-2-associated athanogene 2 (BAG2) are direct targets of miR-1180. It was observed that miR-1180 expression was significantly decreased in the prostate cancer tissues compared with the normal prostate tissues, and was also inhibited in DU145 cells compared with RWPE-1 cells. Furthermore, transient overexpression of miR-1180 inhibited the proliferation, migration and invasion, and promoted the apoptosis of DU145 cells, as well as alleviated expression of associated proteins. The dual-luciferase reporter assay confirmed that TRAF1 and BAG2 are direct targets of miR-1180. These results suggested that miR-1180 contributed to prostate cancer by targeting TRAF1/BAG2 and by nuclear factor-κB signaling pathway activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835872 | PMC |
http://dx.doi.org/10.3892/ol.2018.7914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!