Distinct prophase arrest mechanisms in human male meiosis.

Development

Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands

Published: April 2018

To prevent chromosomal aberrations being transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. Here, we unravel two clearly distinct meiotic arrest mechanisms that occur during prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y chromosome-encoded gene and seem to activate a DNA damage pathway leading to induction of p63, possibly causing spermatocyte apoptosis. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to silence the X chromosome-encoded gene Discovery and understanding of these meiotic arrest mechanisms increases our knowledge of how genomic stability is guarded during human germ cell development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124541PMC
http://dx.doi.org/10.1242/dev.160614DOI Listing

Publication Analysis

Top Keywords

arrest mechanisms
12
meiotic arrest
12
human male
8
male meiosis
8
type arrested
8
arrested spermatocytes
8
spermatocytes display
8
chromosome-encoded gene
8
meiotic
5
distinct prophase
4

Similar Publications

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

PepGAT, a chitinase-derived peptide, alters the proteomic profile of colorectal cancer cells and perturbs pathways involved in cancer survival.

Int J Biol Macromol

January 2025

Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil. Electronic address:

Colorectal cancer (CRC) affects the population worldwide, occupying the first place in terms of death and incidence. Synthetic peptides (SPs) emerged as alternative molecules due to their activity and low toxicity. Proteomic analysis of PepGAT-treated HCT-116 cells revealed a decreased abundance of proteins involved in ROS metabolism and energetic metabolisms, cell cycle, DNA repair, migration, invasion, cancer aggressiveness, and proteins involved in resistance to 5-FU.

View Article and Find Full Text PDF

Unlabelled: is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by to persist are not fully understood.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!