We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3-H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by two study periods (150 min each), clamp period 1 (P1) and clamp period 2 (P2). At 0 min, somatostatin and GRI (36 ± 3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused intravenously; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole-body insulin clearance and insulin concentrations were not different in P1 versus P2 with HI, but whole-body insulin clearance was 23% higher and arterial insulin 16% lower in P1 versus P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (HGU) (HI mean ± SEM 2.1 ± 0.5 vs. 3.3 ± 0.4 GRI mg/kg/min). Nonhepatic glucose uptake in P1 and P2, respectively, differed between treatments (2.6 ± 0.3 and 7.4 ± 0.6 mg/kg/min with HI vs. 2.0 ± 0.2 and 8.1 ± 0.8 mg/kg/min with GRI). Thus, glycemia affected GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961410 | PMC |
http://dx.doi.org/10.2337/db18-0099 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.
View Article and Find Full Text PDFLife Metab
February 2025
Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29029, United States.
Graphical Abstract.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China.
Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.
View Article and Find Full Text PDFCancer Metab
January 2025
Department of Cardiovascular medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
The Warburg effect, characterized by the shift toward aerobic glycolysis, is closely associated with the onset and advancement of tumors, including multiple myeloma (MM). Nevertheless, the specific regulatory mechanisms of glycolysis in MM and its functional role remain unclear. In this study, we identified that growth differentiation factor 15 (GDF15) is a glycolytic regulator, and GDF15 is highly expressed in MM cells and patient samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!