Background: Johne's disease is a major production limiting disease of dairy cows. The disease is chronic, progressive, contagious and widespread; there is no treatment and there is no cure. Economic losses arise from decreased productivity through reduced growth, milk yield and fertility and capital losses due to premature culling or death. This study attempts to address the effect of subclinical JD on milk production under New Zealand pastoral dairy farming conditions using a new testing approach. Blood samples were taken from all lactating animals from a single seasonally calving New Zealand dairy herd in the autumn of 2013 and 2014. Samples were subject to serological assay for antibodies to Mycobacterium avium subsp. paratuberculosis using a combination of four ELISA tests in parallel followed by selective quantitative fecal PCR to confirm the fecal shedding characteristics of ELISA positive cows. ELISA status was classified as Not-Detected, Low, Moderate or High and fecal PCR status as Not-Detected, Moderate or High.
Results: A mixed generalized regression model indicated that, compared to cows where MAP was not detected, daily milk solids production was 4% less for high ELISA positive cows (p = 0.004), 6% less for moderate fPCR cows (p = 0.036) and 12% less for high fPCR cows (p < 0.001).
Conclusions: This study confirms that sub-clinical JD can have a significant impact on milk production and that the testing methodology used stratified the animals in this herd on their likely impact on production and disease spread. This allowed the farmer to prioritize removal of heavily shedding, less-productive animals and so reduce the risk of infection of young stock. This is the first longitudinal study based in New Zealand looking at the effect of Johne's infection status on daily milk production allowing for intermediary and confounding factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853068 | PMC |
http://dx.doi.org/10.1186/s12917-018-1421-4 | DOI Listing |
Sci Rep
January 2025
Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.
View Article and Find Full Text PDFPrev Vet Med
December 2024
School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, Guadalajara, Mexico.
Studies have noted the connection between Mycobacterium avium subspecies paratuberculosis (MAP) and autoimmunity. MAP is an intracellular pathogen that infects and multiplies in macrophages. To overcome the hostile environment elicited by the macrophage, MAP secretes a battery of virulence factors to neutralize the toxic effects of the macrophage.
View Article and Find Full Text PDFCureus
November 2024
Pulmonology, Unidade Local de Saúde Amadora/Sintra, Amadora, PRT.
Introduction The prevalence of nontuberculous mycobacteria (NTM) is higher in patients with structural lung disease and in immunocompromised patients. Lung involvement is the most common. The complex corresponds to the most identified agent.
View Article and Find Full Text PDFFront Immunol
December 2024
Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Introduction: The incidence and prevalence of infections with non-tuberculous mycobacteria such as (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!