Background: Liver tumor initiating cells (TICs) have self-renewal and differentiation properties, accounting for tumor initiation, metastasis and drug resistance. Long noncoding RNAs are involved in many physiological and pathological processes, including tumorigenesis. DNA copy number alterations (CNA) participate in tumor formation and progression, while the CNA of lncRNAs and their roles are largely unknown.
Methods: LncRNA CNA was determined by microarray analyses, realtime PCR and DNA FISH. Liver TICs were enriched by surface marker CD133 and oncosphere formation. TIC self-renewal was analyzed by oncosphere formation, tumor initiation and propagation. CRISPRi and ASO were used for lncRNA loss of function. RNA pulldown, western blot and double FISH were used to identify the interaction between lncRNA and CTNNBIP1.
Results: Using transcriptome microarray analysis, we identified a frequently amplified long noncoding RNA in liver cancer termed linc00210, which was highly expressed in liver cancer and liver TICs. Linc00210 copy number gain is associated with its high expression in liver cancer and liver TICs. Linc00210 promoted self-renewal and tumor initiating capacity of liver TICs through Wnt/β-catenin signaling. Linc00210 interacted with CTNNBIP1 and blocked its inhibitory role in Wnt/β-catenin activation. Linc00210 silencing cells showed enhanced interaction of β-catenin and CTNNBIP1, and impaired interaction of β-catenin and TCF/LEF components. We also confirmed linc00210 copy number gain using primary hepatocellular carcinoma (HCC) samples, and found the correlation between linc00210 CNA and Wnt/β-catenin activation. Of interest, linc00210, CTNNBIP1 and Wnt/β-catenin signaling targeting can efficiently inhibit tumor growth and progression, and liver TIC propagation.
Conclusion: With copy-number gain in liver TICs, linc00210 is highly expressed along with liver tumorigenesis. Linc00210 drives the self-renewal and propagation of liver TICs through activating Wnt/β-catenin signaling. Linc00210 interacts with CTNNBIP1 and blocks the combination between CTNNBIP1 and β-catenin, driving the activation of Wnt/β-catenin signaling. Linc00210-CTNNBIP1-Wnt/β-catenin axis can be targeted for liver TIC elimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853034 | PMC |
http://dx.doi.org/10.1186/s12943-018-0783-3 | DOI Listing |
Trends Immunol
January 2025
Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Tumor-initiating cells (TICs) are particularly efficient at evading detection and elimination by the human immune system. Recent data from Yang and collaborators demonstrate that - at least in preclinical hepatocellular carcinoma models - the immunological privilege of CD49f TICs can be limited by targeting CD155, resulting in restored sensitivity to immune checkpoint inhibitors.
View Article and Find Full Text PDFCancer Cell
December 2024
Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong. Electronic address:
Aggressive features of hepatocellular carcinoma (HCC) are highly related to liver tumor-initiating cells (TICs), which are heterogeneous and plastic. In this issue of Cancer Cell, Yang et al. reveal the ability of CD49f-high TICs in shaping the tumor immunosuppressive microenvironment in HCC.
View Article and Find Full Text PDFCancer Cell
December 2024
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME).
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Department of Bioengineering, University of Washington, Seattle, WA (C.K., A.W., M.S., M.A.); and Department of Radiology, University of Washington, Seattle, WA (M.D.).
Objective: The aim of this study is to define a comprehensive and repeatable contrast-enhanced ultrasound (CEUS) imaging protocol and analysis method to quantitatively assess lesional blood flow. Easily repeatable CEUS evaluations are essential for longitudinal treatment monitoring. The quantification method described here aims to provide a structure for future clinical studies.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
Background: Dynamic computed tomography (CT) angiography of the abdomen provides perfusion information and characteristics of the tissues present in the abdomen. This information could potentially help characterize liver metastases. However, radiation dose has to be relatively low for the patient, causing the images to have very high noise content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!