CuO/CeO is a kind of promising catalysts for the water-gas shift (WGS) reaction. Efforts were put in to improve its performance through modification of CeO support. In this study, portions of CeO prepared by a co-precipitation method were separately annealed at 300 °C in air, under vacuum and with H , and were used as supports for the fabrication of CuO/CeO catalysts. The physicochemical properties of the catalysts were characterized by X-ray diffraction, N -physisorption, inductively coupled plasma, Raman spectroscopy, CO temperature-programmed desorption, and H temperature-programmed reduction techniques. The relation between catalytic performances and physicochemical properties of the CuO/CeO catalysts were discussed. Among the three catalysts, the one with CuO supported on H -reduced CeO shows the highest catalytic activity, mainly due to strong CuO-CeO synergetic interaction and high concentration of Frenkel-type oxygen vacancies. The superior catalytic activities can also be attributed to the Cu crystals of small size and the oxygen vacancies in non-stoichiometric CeO .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201800122 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.
The mechanism and activity of the water-gas shift reaction (WGSR) on single-atom alloy Al/Cu (111) and Cu (111) surfaces were studied using GGA-PBE-D3. Al/Cu (111) exhibited bifunctional active sites, with the Al site being positively charged and the Cu site negatively charged due to electronic interactions. This led to selective adsorption of HO and CO.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China
CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!