Triazole resistance is an increasing concern in the opportunistic mold Aspergillus fumigatus. Resistance can develop through exposure to azole compounds during azole therapy or in the environment. Resistance mutations are commonly found in the Cyp51A-gene, although other known and unknown resistance mechanisms may be present. Surveillance studies show triazole resistance in six continents, although the presence of resistance remains unknown in many countries. In most countries, resistance mutations associated with the environment dominate, but it remains unclear if these resistance traits predominately migrate or arise locally. Patients with triazole-resistant aspergillus disease may fail to antifungal therapy, but only a limited number of cohort studies have been performed that show conflicting results. Treatment failure might be due to diagnostic delay or due to the limited number of alternative treatment options. The ISHAM/ECMM Aspergillus Resistance Surveillance working group was set up to facilitate surveillance studies and stimulate international collaborations. Important aims are to determine the resistance epidemiology in countries where this information is currently lacking, to gain more insight in the clinical implications of triazole resistance through a registry and to unify nomenclature through consensus definitions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myx144DOI Listing

Publication Analysis

Top Keywords

triazole resistance
16
resistance
11
resistance surveillance
8
aspergillus fumigatus
8
resistance mutations
8
surveillance studies
8
limited number
8
triazole
4
surveillance
4
aspergillus
4

Similar Publications

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.

View Article and Find Full Text PDF

Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.

View Article and Find Full Text PDF

Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Species.

Biomolecules

January 2025

Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy.

In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, species, notably and , are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens.

View Article and Find Full Text PDF

Background: Fungal invasive infections caused by Candida species pose a substantial public health risk with limited therapeutic options. Antifungal susceptibility testing (AFST) is necessary to optimize the therapy. The study aimed to compare different AFST methods of Candida spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!