There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851542 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191439 | PLOS |
Int J Biol Macromol
January 2025
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:
Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.
Background: Traumatic brain injury (TBI) is a significant public health issue and a leading cause of death and disability globally. Advances in clinical care have improved survival rates, leading to a growing population living with long-term effects of TBI, which can impact physical, cognitive, and emotional health. These effects often require continuous management and individualized care.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFViruses
January 2025
Antiguo Hospital Civil de Guadalajara, "Fray Antonio Alcalde", Guadalajara 44280, Mexico.
This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!