Although metal-ion-binding interlocked molecules have been under intense investigation for over three decades, their application as scaffolds for the development of sensors for metal ions remains underexplored. In this work, we demonstrate the potential of simple rotaxanes as metal-ion-responsive ligand scaffolds through the development of a proof-of-concept selective sensor for Zn .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947674PMC
http://dx.doi.org/10.1002/anie.201712931DOI Listing

Publication Analysis

Top Keywords

sensors metal
8
metal ions
8
scaffolds development
8
chelating rotaxane
4
rotaxane ligands
4
ligands fluorescent
4
fluorescent sensors
4
ions metal-ion-binding
4
metal-ion-binding interlocked
4
interlocked molecules
4

Similar Publications

TiCT MXene nanoribbons@MnO: A novel multifunctional probe for colorimetric and fluorescence dual-response sensing of trichlorfon.

Talanta

December 2024

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China. Electronic address:

Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!