The Really Interesting New Gene (RING) Finger protein 11 (RNF11) is a subunit of the A20 ubiquitin-editing complex that ensures the transient nature of inflammatory responses. Although the role of RNF11 as a negative regulator of NF-κB signalling is well-documented, the molecular mechanisms that underpin this function are poorly understood. Here, we show that RNF11 binds both Ubc13 and the Ubc13~ubiquitin conjugate tightly and with similar affinity, but has minimal E3 ligase activity. Remarkably, RNF11 appears to bind Ubc13 so tightly that it outcompetes the E1 and an active E3 ligase. As a consequence, RNF11 may regulate the activity of E3s that rely on Ubc13 for ubiquitin chain assembly by limiting the availability of Ubc13 and its conjugate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13029 | DOI Listing |
Background: RING finger protein 213 () p.R4810K is an established risk factor for moyamoya disease and intracranial artery stenosis in East Asian people. Recent evidence suggests its potential association with extracranial cardiovascular diseases, including pulmonary hypertension.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.
Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.
NMC Case Rep J
December 2024
Department of Neurosurgery, Institute of Science Tokyo, Tokyo, Japan.
Moyamoya disease (MMD) is characterized by distinct histopathological changes in intracranial arteries, such as narrowing of the arterial lumen due to thickening of the tunica intima, waving of the internal elastic membranes, and thinning of the tunica media. Ring finger protein 213 is a susceptibility gene for MMD that affects clinical outcomes. However, little is known about its relationship with histopathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!