Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity.

J Phys Chem Lett

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic.

Published: April 2018

The detailed functional mechanism of recoverin, which acts as a myristoyl switch at the rod outer-segment disk membrane, is elucidated by direct and replica-exchange molecular dynamics. In accord with NMR structural evidence and calcium binding assays, simulations point to the key role of enhanced calcium binding to the EF3 loop of the semiopen state of recoverin as compared to the closed state. This 2-4-order decrease in calcium dissociation constant stabilizes the semiopen state in response to the increase of cytosolic calcium concentration in the vicinity of recoverin. A second calcium ion then binds to the EF2 loop and, consequently, the structure of the protein changes from the semiopen to the open state. The latter has the myristoyl chain extruded to the cytosol, ready to act as a membrane anchor of recoverin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b00495DOI Listing

Publication Analysis

Top Keywords

calcium binding
8
semiopen state
8
calcium
6
recoverin
5
calcium sensing
4
sensing recoverin
4
recoverin protein
4
protein conformation
4
conformation ion
4
ion affinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!