There is an ongoing probing of the role of chemicals in the indoor environment. The majority of potential target substances are so-called very volatile, volatile, and semi-volatile organic compounds (VVOCs, VOCs, and SVOCs). Depending on their physical properties and the mass transfer conditions, they are distributed in or between the gas phase, particle phase, settled house dust, surface films, clothing, and other fabrics as well as the exposed skin and hair of the occupants themselves. Therefore, inhalation, ingestion, and dermal uptake all must be considered as relevant pathways for exposure assessment in human habitats. Exposure to VVOCs, VOCs, and SVOCs can be estimated by measuring their concentrations in relevant indoor compartments or by determining the amounts of the target compounds and/or their metabolites in urine and blood. Assessing the various routes of exposure often requires a combination of sophisticated and interdisciplinary theoretical background and experimental techniques. Consequently, close communication and collaboration between chemical and exposure scientists are needed to achieve a better understanding of human exposure to chemical substances in various indoor environments. Embedded in the toxicological context, this is the basis for assessing the corresponding health risks and for determining control strategies or approaches to limit such risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201711023 | DOI Listing |
Vet Parasitol
January 2025
Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China. Electronic address:
Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil.
View Article and Find Full Text PDFDis Colon Rectum
February 2025
Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Ohio.
Background: Patients with Crohn's disease face an elevated risk of colorectal cancer, in part due to underlying chronic inflammation. Biologic therapy is the mainstay of medical treatment; however, the impact of treatment on colorectal cancer-related outcomes remains unclear.
Objective: To investigate the association between prior exposure to biologic treatment and colorectal cancer-related outcomes in patients with underlying Crohn's disease.
Am J Manag Care
January 2025
Department of Orthopedic Surgery, Duke University School of Medicine, 311 Trent Dr, Durham, NC 27710. Email:
Objectives: Patients are often discharged to a skilled nursing facility (SNF) for postacute rehabilitation. Functional outcomes achieved in SNFs are variable, and costs are high. Especially for accountable care organizations (ACOs), home-based postacute rehabilitation offers a high-value option if outcomes are not compromised.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.
Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.
Biomol Biomed
January 2025
China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China; Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
In recent years, the health challenges linked to frailty in the elderly, particularly those worsened by cigarette smoke, have become more pronounced. However, quantitative studies examining the impact of smoking dosage on frailty in this population remain limited. To address this gap, we developed a model using smoke-exposed elderly mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!