Lewis-base-catalysed selective reductions of ynones with a mild hydride donor.

Chem Commun (Camb)

Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.

Published: March 2018

Ynones are efficiently reduced with a mild hydride donor in the presence of a catalytic amount of nucleophilic phosphines. The reactions are selective 1,2-reductions that give propargyl alcohols in yields of up to 96%. It is proposed that success in these reactions depends on the activation of ynones by a Lewis base catalyst. A protic additive plays a key role in suppressing the undesired reaction pathways and accelerating the 1,2-reductions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc00058aDOI Listing

Publication Analysis

Top Keywords

mild hydride
8
hydride donor
8
lewis-base-catalysed selective
4
selective reductions
4
reductions ynones
4
ynones mild
4
donor ynones
4
ynones efficiently
4
efficiently reduced
4
reduced mild
4

Similar Publications

Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.

View Article and Find Full Text PDF

Zirconium(IV)-Catalysed Hydrosilylation of Organic Carbonates and Polycarbonates Household Wastes into Alcohol Derivatives.

Chemistry

January 2025

Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.

The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.

View Article and Find Full Text PDF

A streamlined strategy for the one-pot synthesis of isoxazolone analogues has been developed through an acceptorless dehydrogenative annulation (ADA) pathway by employing new Ru(II) hydride complexes as effective catalysts. New Ru(II) complexes () tailored with N̂O chelating carbazolone benzhydrazone ligands were synthesized and their formation was confirmed using analytical and spectral techniques including FT-IR and NMR. The structural configuration of the complexes featuring an octahedral geometry around the Ru(II) ion was precisely determined by single-crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

Electrolyte Effects on Electrochemical CO Reduction Reaction at Sn Metallic Electrode.

J Phys Chem C Nanomater Interfaces

December 2024

Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands.

Understanding the electrolyte factors governing the electrochemical CO reduction reaction (CORR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CORR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CORR activity and selectivity.

View Article and Find Full Text PDF

Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation.

Beilstein J Org Chem

December 2024

Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.

The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!