Chains of nanoscale plasmonic resonators are capable of sub-diffractional waveguiding and have applications in nanophotonics and thermal radiation transport. Practical uses have largely been limited, however, due to high optical losses or low group velocities. Here, we predict the waveguide performance of a material structure capable of overcoming these limitations: plasmonic resonators embedded in high-dielectric nanowires. Due to the enhanced near-field coupling between resonators, we find that the group velocities and propagation lengths for doped Si plasmonic resonators in intrinsic Si nanowires can be increased by up to an order of magnitude compared to the case of isotropic vacuum surroundings. We investigate the impact of resonator aspect ratio, doping, and spacing on waveguide performance, and we find that propagation lengths are maximized for large aspect ratios and high dopant concentrations at small spacings. To study these complex anisotropic systems, we develop a new analytical "absorption spectra" method to extract waveguide information from simple far-field absorption experiments (or simulations) of only two coupled resonators.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr00701bDOI Listing

Publication Analysis

Top Keywords

plasmonic resonators
16
sub-diffractional waveguiding
8
group velocities
8
waveguide performance
8
propagation lengths
8
resonators
6
waveguiding mid-infrared
4
plasmonic
4
mid-infrared plasmonic
4
resonators semiconductor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!